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Evaluating the Effects of Imputation on the Power,
Coverage, and Cost Efficiency of Genome-wide SNP Platforms

Carl A. Anderson,1,* Fredrik H. Pettersson,1 Jeffrey C. Barrett,1 Joanna J. Zhuang,1 Jiannis Ragoussis,1

Lon R. Cardon,2 and Andrew P. Morris1

Genotype imputation is potentially a zero-cost method for bridging gaps in coverage and power between genotyping platforms. Here, we

quantify these gains in power and coverage by using 1,376 population controls that are from the 1958 British Birth Cohort and were

genotyped by the Wellcome Trust Case-Control Consortium with the Illumina HumanHap 550 and Affymetrix SNP Array 5.0 platforms.

Approximately 50% of genotypes at single-nucleotide polymorphisms (SNPs) exclusively on the HumanHap 550 can be accurately

imputed from direct genotypes on the SNP Array 5.0 or Illumina HumanHap 300. This roughly halves differences in coverage and power

between the platforms. When the relative cost of currently available genome-wide SNP platforms is accounted for, and finances are

limited but sample size is not, the highest-powered strategy in European populations is to genotype a larger number of individuals

with the HumanHap 300 platform and carry out imputation. Platforms consisting of around 1 million SNPs offer poor cost efficiency

for SNP association in European populations.
The advent of cost-effective, high-throughput genotyping

technologies has greatly aided the identification of genetic

variants underlying human disease.1–4 Most genome-wide

association (GWA) studies use mass-produced genotype

chips designed to capture a given proportion of genetic

variation genome wide. The exact proportion of captured

variation differs among platforms and populations de-

pending on the number of single-nucleotide polymor-

phisms (SNPs) and their selection criteria.5 If sample size

is limited but finances are not, individuals should be gen-

otyped with the platform that provides the most genomic

coverage. When sample size is unlimited but finances are

restricted, a choice must be made between genotyping

the maximum number of individuals or the maximum

number of SNPs.

Imputation can potentially bridge the gap in coverage

between genome-wide SNP platforms. Here, direct geno-

type data are combined with population haplotype and

historical recombination information to predict an indi-

vidual’s genotype at ungenotyped SNPs. If all SNPs fea-

tured exclusively on a given chip can be accurately im-

puted on the basis of genotype data from a platform of

lower density (and cost), one should always choose to ge-

notype additional individuals in preference to additional

SNPs. In practice, not all of these SNPs are going to be

imputed accurately. Therefore, to ascertain whether the

number of SNPs or the number of individuals should be

maximized in the design of a GWA, two further questions

must be answered: (1) What proportion of SNPs found

exclusively on a dense GWA platform can be accurately

imputed from genotype data on less dense products? (2)

What effect in terms of coverage and power do these im-

puted SNPs have on genome-wide association analysis

and our choice of platform?
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To answer these questions, we used empirical data from

the 1958 British Birth Cohort (58C)6 genotyped with both

the HumanHap 550 platform and SNP Array 5.0 by the

Wellcome Trust Case-Control Consortium (WTCCC).4

For a given platform, individuals with a genome-wide

genotype missingness > 5% were removed in addition to

related, duplicated, and individuals of non-European

descent identified during the original WTCCC project.4

Only the 1,376 individuals passing quality control (QC)

on both SNP Array 5.0 and HumanHap 550 platforms re-

mained under study. For both platforms, SNPs with a geno-

type call rate < 95%, or< 99% for SNPs with a minor-allele

frequency (MAF) < 5%, were removed in addition to SNPs

with a Hardy-Weinberg exact p value < 5.7 3 10�7. Of the

555,352 SNPs on the HumanHap 550 platform, 529,167

(95.3%) passed QC. Of the 500,568 SNPs on the SNP Array

5.0, 459,450 (91.7%) passed QC. Direct genotyping was

not carried out with the HumanHap 300 platform, so we

use the 313,504 SNPs (98.74% of all HumanHap 300

SNPs) that are also featured on the HumanHap 550 as

a proxy (HumanHap 300*).

We excluded 22,930 SNP Array 5.0 SNPs and 22,416

HumanHap 300 SNPs that were monomorphic in the CEU

HapMap panel. Some of these SNPs were polymorphic in

the 58C, and this highlights one disadvantage of basing

imputations on the small number of individuals in the

HapMap—variation at rare SNPs (MAF % 2%) that are

monomorphic in the HapMap will be lost (Figure 1). Phase

III of the HapMap project is currently ongoing and aims

at genotyping the ~1.7 million SNPs that are featured on

the HumanHap 1M or Affymetrix SNP Array 6.0. Approxi-

mately twice the number of samples currently in the

HapMap will be genotyped. This improved resource should

enable rare SNPs to be imputed more accurately. In the
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present study, imputations were based on CEU haplotype

information for all SNPs found in Phase II HapMap release

21 - NCBI Build 35 (dbSNP build 125) and data detailing

local recombination rates.7,8 These were combined with

direct genotyping data from either the SNP Array 5.0 or

HumanHap 300*. For each of these platforms, we imputed

all polymorphic HapMap SNPs (excluding those for which

we had direct genotype data), although only SNPs that are

featured exclusively on the HumanHap 550 were taken

forward for analysis. We could not use all HapMap SNPs

in our analysis because we only had direct genotypes avail-

able for comparison for those SNPs on the HumanHap 550

or SNP Array 5.0. Imputations were carried out with IM-

PUTE,9 which outputs the posterior probability that an

individual is each of three genotype classes (AA, AB, BB)

per SNP. For a given individual, any genotype with a poste-

rior probability R 0.9 was called, and genotypes at SNPs

with a maximum posterior probability below this thresh-

old were classified as missing. Typically, when analyzing

imputed genotype data, one should average over the distri-

bution of genotype probabilities and carry out a weighted

logistic regression analysis. However, here we wished to

directly compare the direct and imputed genotypes and

so created an ‘‘imputed genotype.’’ In total, we contrasted

imputed genotypes at 427,838 SNPs on the basis of the

SNP Array 5.0 and 203,859 SNPs on the basis of the

HumanHap 300* to direct genotypes from the lHumanHap

550 platform.

Before comparing the direct and imputed genotypes, we

removed SNPs that were likely to be imputed inaccurately.

These include SNPs that (1) have swapped strands between

Figure 1. Minor-Allele Frequency of
SNPs Directly Genotyped in 1,376 Sam-
ples from the 58C
(A) Minor-allele frequency for the 450,769
SNPs that are featured on the HumanHap
550 but not the Affymetrix SNP Array 5.0
and are also polymorphic in the 58C.
(B) Minor-allele frequency for the subset of
427,839 SNPs from (A) that are also poly-
morphic in the CEU HapMap data.
(C) Minor-allele frequency for the 215,998
that are featured on the HumanHap 550
but not the Illumina HumanHap 300* and
are also polymorphic in the 58C.
(D) Minor-allele frequency for the subset of
203,860 SNPs from (C) that are also poly-
morphic in the CEU HapMap data. Basing
imputations on haplotype data from the
HapMap causes variation at rare SNPs
(MAF % 0.02) to be lost.

HapMap release21 and release22; (2)

are removed from the latest versions

of genome-wide SNP chips; (3) have

more than 5% missing data in the

HapMap; (4) have more than 5% dis-

cordant genotypes between original HapMap genotyping

and the regenotyping of the CEU HapMap samples using

genome-wide SNP chips; and (5) show significant differ-

ences in frequency when called with the BRLMM and

CHIAMOþþ4 genotype-calling algorithms. In total,

45,692 and 31,953 SNPs on the HumanHap 550 were re-

moved from the imputations based on SNP Array 5.0 and

HumanHap 300, respectively.

We applied partial least-squares projection to latent-

structures discriminant analysis (PLS-DA) to detect and

quantify systematic differences between direct and im-

puted genotypes. PLS-DA is a multivariate regression

method that relates a data matrix (X) to a singular (y) or

multiple (Y) response variables. In the current study, X is

a single matrix containing 1,376 3 2 rows (each individual

is represented twice, once with a direct genotype vector

and once with an imputed genotype vector) and n col-

umns, where n is the number of SNPs under comparison.

Y is a vector classifying each individual genotype vector

(row) as either direct or imputed genotypes To get a numer-

ical estimate of how strongly a model based on the direct

and imputed genotypes can discriminate if a particular ge-

notype vector is from a direct or imputed source, we ap-

plied a cross-validation approach. Here, supervised models

are built with six-sevenths of the genotype vectors (both

direct and imputed). Each model is used to predict the or-

igin of the remaining one-seventh of genotype vectors. For

this ‘‘test set’’ of genotype vectors, the prediction model

uses only the genotypes to predict status (i.e., the known

status of the genotype vector is ignored). This procedure

is repeated seven times until the status of each genotype
The American Journal of Human Genetics 83, 112–119, July 2008 113



Figure 2. Assessment of Imputed-Genotype Filtering Criteria
Assessment of filtering criteria for the Illumina HumanHap 550 genotypes based on Affymetrix SNP Array 5.0 (A–C) and Illumina Human-
Hap300* (D–F) genotype data.
(A and D) The number of SNPs passing filter thresholds based on per-SNP measures of mean maximum posterior probability (blue) or ge-
notype call rate (red). The number of these SNPs with an r2 R 0.8 between direct and imputed genotype calls is shown after the removal of
SNPs not passing filtering thresholds based on per-SNP measures of mean maximum posterior probability (dark gray) and genotype call
rate (light gray).
(B and E) The PLS-DA Q2 value after the removal of SNPs not passing filtering thresholds based on per-SNP measures of mean maximum
posterior probability (blue) and genotype call rate (red). A Q2 value of 1 indicates that the current PLS model can perfectly predict whether
a given genotype vector is of direct or imputed origin. A Q2 of 0 indicates that the model has no power to predict the genotype’s origin.
(C and F) Mean r2 between direct and imputed genotypes after the removal of SNPs not passing filtering thresholds based on per-SNP
measures of mean maximum posterior probability (blue) and genotype call rate (red).
vector has been predicted once. Subsequently, a cross-vali-

dation score (Q2) is calculated from the difference between

the observed and predicted genotype status values. Q2 re-

flects the mean accuracy of the models for predicting the

status of the genotype vectors.10 Therefore, a Q2 of 1 indi-

cates that many systematic differences exist between direct

and imputed genotypes, and a Q2 of 0 indicates that no

such differences exist.

Filtering imputed data based on genotype call rate and/or

mean maximum posterior probability can remove many

poorly imputed genotypes. For both metrics, we incre-

mented the filtering threshold from 0 to 1 in steps of 0.01

to ascertain which filtering criterion most efficiently elimi-

nated differences between direct and imputed genotypes. A

PLS-DA model was fitted to each data set, and Q2 was esti-

mated through cross-validation to assess the level of disper-

sion. For each filtering criterion, the number of remaining
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SNPs and the mean r2 between the remaining direct and im-

puted genotypes were calculated. Filtering imputed SNPs

based on genotype call rate was more efficient than mean

maximum posterior probability (Figure 2). Using SNP Array

5.0 genotypes, we were able to accurately impute 245,430 of

the attempted 427,838 HumanHap 550 SNPs after remov-

ing all SNPs with an imputed genotype call rate % 0.89.

For imputations based on HumanHap 300* genotypes, we

were able to accurately impute 104,180 of the attempted

203,859 HumanHap 550 SNPs after removing all those

with a genotype call rate % 0.93. The applied filtering crite-

ria represent the most efficient means of removing system-

atic differences between direct and imputed genotypes in

our data. When we repeated the analysis by including the

SNPs that we believed, a priori, were likely to be imputed

badly, more stringent thresholds were required and fewer

SNPs were successfully imputed.
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Thecertainty thatan imputationalgorithm has foragiven

imputed genotype does not always perfectly reflect the accu-

racy of imputation. Estimates of coverage and power would

be biased if we assumed all SNPs passing the imputed geno-

type call-rate filters were accurate, so only those with an r2 R

0.8 between known and imputed genotypes were taken for-

ward for further analysis (239,931 and 99,831 SNPs imputed

from the SNP Array 5.0 and HumanHap 300, respectively).

Coverage was estimated with the formula outlined by Bar-

rett and Cardon,5 and results showed that approximately

half the difference in coverage between the SNP Array 5.0

or HumanHap 300 and the HumanHap 550 could be recov-

ered through imputation (Table 1).

We carried out simulations with the R statistical pack-

age11 to quantify the power to detect association with SNPs

present on the (1) SNP Array 5.0; (2) HumanHap 300; (3)

SNP Array 5.0 plus successful imputations; (4) HumanHap

300 plus successful imputations; (5) Affymetrix SNP-array-

6.0, and (6) Illumina HumanHap 1M. For each polymor-

phic CEU HapMap SNP (release 21), we calculated the max-

imum r2, in the CEU HapMap data, between it and the SNPs

on each of the above genotyping platforms by using the

CEU HapMap data. For SNPs that are featured on the given

SNP chip, maximum r2 is therefore 1. We assessed the power

of each SNP set to detect associations to SNPs of varying

allelic odds ratio (1.0–2.0, 0.01 increments) and risk-

increasing allele frequency (RAF) (0.05 % RAF < 0.10,

0.10 % RAF<0.20, 0.20 % RAF % 0.50). To obtain empirical

distributions of RAF and maximum r2, we selected at ran-

dom 10,000 HapMap SNPs within each of the RAF ranges.

If the causal variant is typed and n individuals are needed

to obtain a given power, then n/r2 individuals are needed

to obtain the same power if a tagSNP is typed where the cor-

relation between the causal SNP and the tagSNP is r2. There-

Table 1. Estimates of Genomic Coverage for Currently
Available Genome-wide SNP Platforms Alone and after
Imputation

Percentage of

Genomic Coverage

at r2 R 0.8

Percentage of

Genomic Coverage

at r2 ¼ 1

Affymetrix SNP Array 5.0 65 43

Affymetrix SNP Array 5.0

plus imputed SNPs

73 54

Affymetrix SNP Array 6.0 80 59

Illumina HumanHap 300 77 42

Illumina HumanHap 300

plus imputed SNPs

81 50

Illumina HumanHap 550 87 57

Illumina HumanHap 1M 91 68

Estimates evaluated with Phase II HapMap data from the CEU population.

Coverage estimates for Illumina HumanHap 1M and Affymetrix SNP-array-

6.0 are likely to be biased downward because the genotypes at approxi-

mately 10% of the SNPs on each platform are not currently publicly avail-

able for the CEU HapMap individuals. Where imputations are included, all

SNPs passing imputation-filter thresholds and with an r2 R 0.8 between

known and imputed genotypes are included along with the SNPs on the

genome-wide SNP chip.
Th
fore, for a given SNP, the maximum r2 can be used to weight

the sample size, and hence the power to detect an associa-

tion can be calculated for each of the SNP platforms under

study. Power was calculated with an assumed type I error

rate of 10�5 and a multiplicative disease model. For each

RAF range and allelic odds ratio, the mean power across

all 10,000 SNPs was calculated to provide an unbiased mea-

sure of power (see Appendix 1).

Initially, fixed baseline sample sizes of 1,000, 2,000, and

5,000 cases (and an equal number of controls) were simu-

lated across all platforms. The successfully imputed SNPs

significantly improved the power of the SNP Array 5.0

and HumanHap 300 to detect association to rare SNPs

(0.05 % MAF< 0.1) of reasonable effect (1.6 – 2.0), yielding

similar power as the SNP-array-6.0 and each other (Fig-

ure 3). For more common SNPs (or smaller effect sizes),

the differences between the platforms are less pronounced,

so the effect of imputation was reduced.

To reflect the cost efficiencies of the various platforms, we

carried out simulations where the baseline sample size for

a given platform was multiplied by the ratio in price per in-

dividual sample between that platform and the HumanHap

550 (sample-size ratios: SNP Array 5.0 ¼ 1.22; HumanHap

300¼ 1.32; HumanHap 550¼ 1; SNP-array-6.0¼ 0.99; Hu-

manHap 1M¼0.57). These price-per-sample ratios were cal-

culated on the basis of indicative UK prices (including work

costs) communicated to us directly from Affymetrix and Il-

lumina and are included here as a guide only. Strikingly, un-

der all simulated scenarios, the HumanHap 300 with impu-

tation provides the most power (Figure 4). This is because it

is the cheapest of the GWA panels but provides, with suc-

cessful imputations, good genomic coverage (81%) of com-

mon variation (MAF R 0.05) at r2 R 0.8 in populations of

European descent. Even without imputation, the Human-

Hap 300 platform appears to be the platform of choice if

sample size is unlimited but finances are not largely due

to a very competitive pricing. In terms of cost efficiency

for power to detect associations in samples of European de-

scent, the HumanHap 1M platform is of low value. How-

ever, ~10% of SNPs on this (and the SNP-array-6.0) platform

are not typed in HapMap samples and are not included in

our analyses. Furthermore, the HumanHap 1M has many

tagSNPs for African populations, which probably offer little

in terms of power and coverage in European populations.

Because of a lack of empirical genotype data, we are unable

to repeat our analyses for non-European populations.

Genome-wide SNP chips no longer focus solely on

capturing variation at SNPs in populations of European

descent and often include tagSNPs for other populations

or tags to capture copy-number variation (CNV). Indeed,

the HumanHap 550 has now been replaced by the Human-

Hap 610, which adds ~60,000 tags for CNVs. The implica-

tions of this on our work are minimal because the vast

majority of these CNV tags are not SNPs and therefore

have little effect on the coverage of, and power to detect

association to, variation in SNPs. However, as the features

on the various platforms become more varied, choosing
e American Journal of Human Genetics 83, 112–119, July 2008 115



Figure 3. Mean power to Detect Association to a Disease with a Fixed Baseline Sample Size
Mean power to detect association (a ¼ 10�5) to a disease with a population prevalence of 0.0001 and a fixed baseline sample size across
different genome-wide platforms (simulated under varying risk allele frequency [RAF] and sample size).
RAF ranges are as follows: (A–C) 0.05 % RAF < 0.10; (D–F) 0.10 % RAF < 0.20; (G and H) 0.20 % RAF % 0.50. Cases and controls are as
follows: (A, D, and G) 1,000 cases, 1,000 controls; (B, E, and F) 2,000 cases, 2,000 controls; (C, F, and I) 5,000 cases, 5,000 controls.
Mean power was calculated after 10,000 simulations where sample size per simulation for each SNP set was weighted by the maximum r2

between a randomly selected HapMap SNP (satisfying RAF constraints) and the SNPs on the given genotyping platform (with HapMap
release 21 CEU data).
a platform for a particular study becomes more difficult

and depends largely on the study population and the be-

lieved underlying genetics of the trait. For example if rare

CNVs are thought to play a role, then a GWA platform fea-

turing CNV tags or other complementary platforms should

be considered.12 If the sample consists of individuals of
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non-European descent, then it is wise to obtain a platform

that covers variation in that population. If a platform that

does not have these added features is chosen, genotype im-

putation is unlikely to ‘‘recapture’’ this variation.

Without empirical genotyping data from other popula-

tions, it is difficult to assess how transferable our results
8



Figure 4. Mean Power to Detect Association to a Disease Where Baseline Sample Size Has Been Varied across Genome-wide SNP
Platforms to Reflect Relative Cost
Mean power to detect association (a ¼ 10�5) to a disease with a population prevalence of 0.0001 where baseline sample size has been
varied across genome-wide SNP platforms to reflect the genotyping cost per sample (sample-size ratios: SNP Array 5.0¼ 1.22; HumanHap
300 ¼ 1.32; HumanHap 550 ¼ 1; SNP Array 6.0 ¼ 0.99; HumanHap 1M ¼ 0.57).
RAF ranges are as follows: (A–C) 0.05 % RAF < 0.10; (D–F) 0.10 % RAF < 0.20; (G and H) 0.20 % RAF % 0.50. Cases and controls are as
follows: (A, D, and G) 1,000 cases, 1,000 controls; (B, E, and F) 2,000 cases, 2,000 controls; (C, F, and I) 5000 cases, 5,000 controls.
Mean power was calculated after 10,000 simulations where sample size per simulation for each SNP set was weighted by the maximum r2

between a randomly selected HapMap SNP (satisfying RAF constraints) and the SNPs on the given genotyping platform (with HapMap
release 21 CEU data).
are among populations. However, imputation quality is di-

rectly related to how well the haplotype map on which the

imputations were based documents variation within the

study population. If there is a good haplotype map for

the given population, we show that much power can be
Th
gained through imputation. However, when a suitable

haplotype map is unavailable, it is unlikely that imputa-

tions will be of sufficient quality to increase power signifi-

cantly. Multidimensional scaling can be carried out to

compare individuals from a given study to individuals
e American Journal of Human Genetics 83, 112–119, July 2008 117



used to build a haplotype map, thus providing some indi-

cation of the suitability of that haplotype map for geno-

type imputation.

It seems likely that the majority of genotypes that can be

accurately imputed for a given data set are previously well

covered by the direct genotypes. Therefore, coverage is

only increased if the imputed SNPs capture variation at

SNPs not previously covered by the SNPs used to carry out

the imputation. The largest gains in coverage and power

stand to be made at those SNPs that are poorly covered by

the direct genotyping, although because of this fact they

are significantly less likely to be imputed with sufficient ac-

curacy to pass QC. However, even a small increase in maxi-

mum r2 between an untyped variant and a tagSNP can in-

crease power toassociate that particular variant with disease.

A study evaluating the cost efficiency of GWA chips,

which did not address imputation, used the sample-size ra-

tio required to equate power as a means of comparing GWA

platforms.13 The authors state when n ¼ 3,000, the Hu-

manHap 300 requires 1.34 times the number of individuals

as the HumanHap 550 for power to be equated. However,

given that under this scenario the power of the two plat-

forms is 0.929 and 0.957 respectively, there seems to be lit-

tle need to genotype extra individuals with the HumanHap

300. When power is high, power curves are reasonably flat

and large sample-size increases are required for small

power gains. Therefore the sample-size ratio required to

equate power between platforms is a poor metric on which

to choose genotyping platforms because the ratio required

to gain practically equivalent power is often far less.

Price ratios used here are intended as a guide only. To en-

able power simulations to be carried out with study-specific

sample sizes and price ratios, we have made the R code used

to carry out the power simulations available online (see Web

Resources). This allows a thorough assessment of which

GWA platform is the most cost efficient for a given study.

With producers of genome-wide SNP platforms continually

offering larger panels at increasing cost, it is a difficult task

to accurately assess which platform offers the most value

for money. Imputation can greatly reduce interplatform dif-

ferences in coverage and power, and given current pricing

structures, can provide (in combination with direct geno-

type data) the most value for money in terms of genomic

coverage and power to detect association.

Appendix 1. Power Simulations

Power estimations for each SNP set were carried out under

the assumption of a multiplicative disease model. For

a given baseline sample size on the Illumina HumanHap

550 platform (550), the corresponding baseline sample

size for an alternative platform is given by n550 3 CR,

where CR is the cost ratio between the two platforms.

The genotype frequencies of the cases (affected by the

disease) and controls (unaffected by the disease) were sim-

ulated with the assumption of a disease population preva-
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lence of 0.0001. The functional polymorphism was ran-

domly ascertained by selection of a random HapMap

SNP, i, from within a given RAF range (0.05 % RAF <

0.10, 0.10 % RAF < 0.20, 0.20 % RAF % 0.50).We assessed

power to detect association to this SNP at a¼ 10�5 by using

the above sample sizes and the Cochran-Armitage test for

trend. Effective sample size, En, which accounts for how

well SNP i is covered by the given genome-wide SNP

chip, was calculated for each platform and is given by

En ¼ n 3 max r2
i ,

where n is the baseline sample size for the given platform

and max r2
i gives the maximum r2 between HapMap SNP

i and those on the given SNP set.

The genotype frequencies of the case and control co-

horts are as follows:

i 0 1 2
Case p0 p1 p2

Control q0 q1 q2,

where i denotes the number of high risk alleles. Genotype

frequencies at the SNP in unaffected individuals given the

RAF q are

q0 ¼ ð1� qÞ2,
q1 ¼ 2qð1� qÞ, and
q2 ¼ q2:

The disease probability (i.e., the probability that an indi-

vidual is affected given his or her genotype) is given by

4 ¼ k

l2q2 þ lq1 þ q0

,

where k is the disease population prevalence, l is the het-

erozygous genotype relative risk, andl2is hence the homo-

zygous genotype relative risk. Subsequently, the genotype

frequencies in affected individuals are

p0 ¼
4ð1� qÞ2

k
,

p1 ¼
24lqð1� qÞ

k
, and

p2 ¼
4l2q2

k
:

Power is given by the c2 distribution with noncentrality

parameter (r) of

b1ðEn=2Þ2

b2 �
�

b3

En

�

where

b1 ¼ ððq1 � p1Þ þ 2ðq2 � p2ÞÞ2,

b2 ¼ Enðp1þq1Þ
2 þ 2Enðp2 þ q2Þ,

b3 ¼
�

Enðp1þq1Þ
2 þ 2Enðp2 þ q2Þ

�2
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